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Onset of submarine debris flow deposition far from
original giant landslide
P. J. Talling1, R. B. Wynn2, D. G. Masson2, M. Frenz2, B. T. Cronin3, R. Schiebel2, A. M. Akhmetzhanov2,
S. Dallmeier-Tiessen4, S. Benetti2, P. P. E. Weaver2, A. Georgiopoulou2, C. Zühlsdorff4 & L. A. Amy1

Submarine landslides can generate sediment-laden flows whose scale
is impressive. Individual flow deposits have been mapped that
extend for 1,500 km offshore from northwest Africa1–7. These are
the longest run-out sediment density flow deposits yet documented
on Earth. This contribution analyses one of these deposits, which
contains ten times the mass of sediment transported annually by all
of the world’s rivers8. Understanding how this type of submarine
flow evolves is a significant problem, because they are extremely
difficult to monitor directly9. Previous work has shown how pro-
gressive disintegration of landslide blocks can generate debris flow,
the deposit of which extends downslope from the original land-
slide10–13. We provide evidence that submarine flows can produce
giant debris flow deposits that start several hundred kilometres from
the original landslide, encased within deposits of a more dilute flow
type called turbidity current. Very little sediment was deposited
across the intervening large expanse of sea floor, where the flow
was locally very erosive. Sediment deposition was finally triggered
by a remarkably small but abrupt decrease in sea-floor gradient from
0.056 to 0.016. This debris flow was probably generated by flow
transformation from the decelerating turbidity current. The alterna-
tive is that non-channelized debris flow left almost no trace of its
passage across one hundred kilometres of flat (0.26 to 0.056) sea
floor. Our work shows that initially well-mixed and highly erosive
submarine flows can produce extensive debris flow deposits beyond
subtle slope breaks located far out in the deep ocean.

Giant submarine landslides can generate rapidly flowing mixtures of
sediment and water. The seminal event for understanding such land-
slide-generated flows occurred offshore from the Grand Banks,
Newfoundland, in 1929 (ref. 10). A large earthquake caused landslides
across 100 km of continental slope. A series of submarine cables were
then broken downslope from the landslides. These breaks recorded a
flow, the frontal velocity of which was 19 m s21 on a gradient of only
0.25u. The Grand Banks event showed that a single submarine landslide
can generate two distinct types of sediment-laden flow10, termed ‘tur-
bidity current’ and ‘debris flow’. Turbidity currents are fully turbulent
and relatively dilute. We adopt the most common definition of turbid-
ity currents, as flows in which sediment is supported primarily by fluid
turbulence14. Debris flows have a higher sediment concentration that
suppresses turbulence, such that other processes become more impor-
tant than fluid turbulence for supporting sediment14,15. These processes
include grain-to-grain collisions, reduced excess particle density, and
yield strength of the sediment–water mixture15. Debris flows defined in
this way are typically laminar, but can be weakly turbulent15,16.

Previous studies, including those of the Grand Banks event, have
shown that submarine debris flows can be generated by progressive
disintegration of strata within an initial large submarine landslide9–12.

Debris flows formed in this way extend downslope from the landslide,
sometimes for several hundred kilometres, and contain intact blocks of
original landslide material. This type of debris flow deposit is typically
tens of metres thick9,10,12. Here we describe a different type of large-
scale debris flow deposit, and propose a new mechanism to explain its
origin. This debris-flow deposit is unusual because it starts several
hundred kilometres from the original landslide, is less than two metres
thick, lacks any intact blocks of landslide material, and is encased
within a turbidity-current deposit formed during the same event.

Our study is based on an analysis of shallow sediment cores from the
Agadir basin, and the Seine and Madeira abyssal plains, located off-
shore from northwest Africa1–7 (Fig. 1). These cores contain a sequence
of deposits spanning the last ,200 thousand years (kyr) (ref. 6). The
majority of flows originated from two distinct sources: the Moroccan
continental margin and the volcanic Canary Islands3,6 (Fig. 1). Flow
deposits were correlated between cores (Supplementary Fig. 1). This
correlation framework is unusually detailed and extensive6, and allows
us to analyse how the deposit from each flow varies spatially.

Flow deposits typically comprise sand overlain by mud. The first
type of sand contains a small fraction of interstitial mud (sediment
,32 mm is ,7%), becomes finer upwards, and has ubiquitous planar
lamination or ripple cross-lamination (Fig. 2 and Supplementary
Fig. 3). There is a gradual transition from this type of sand into
overlying mud. These features indicate deposition from a low-
sediment-concentration suspension inferred to be a turbidity cur-
rent6,14. The second type of sand interval occurs in only one flow
deposit, which we call bed 5 (refs 6, 17). This type of sand has four
distinct features: it is ungraded, there are no laminations, it contains a
much higher percentage of mud (sediment ,32 mm is .30%), and it
is separated from overlying mud by an abrupt change in grain size
(Fig. 2; Supplementary Fig. 3). These four features indicate sand
deposition en masse from a higher-concentration mud-rich sedi-
ment mixture18 inferred to be a cohesive debris flow11,17.

A turbidite (the deposit formed by a turbidity current) wholly
encases the debrite (the deposit formed by a debris flow) within bed
5, indicating that both were deposited during the same flow event.
Background oceanic sedimentation deposited hemipelagic sediment
between other flow deposits (Supplementary Fig. 1), but hemipelagic
sediment is absent between the turbidite and the debrite in bed 5.

The flow that deposited bed 5 contained ,125 km3 of sediment6

(22.5 3 1013 kg of sediment, assuming a density of 1,800 kg m23).
Some submarine density flows originate from flood discharges from
rivers14. However, even during very large historical floods, rivers supplied
only 109 to 1011 kg of sediment to the ocean19. The annual flux of sedi-
ment from all of the world’s rivers to the oceans13 is ,2 3 1013 kg. The
large volume of bed 5 indicates flow initiation by a submarine landslide.
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Debrite and turbidite intervals within bed 5 have similar composi-
tions rich in shallow-water shelf sediment6 (Supplementary Fig. 3).
This sediment composition, together with spatial trends in grain size,
indicates that the original landslide occurred on the Moroccan con-
tinental margin near the Agadir canyon2–6. Seismic reflection profiles
show that shallow landslides and debris flows are widespread along the
flanks of this canyon, although the landslide that generated bed 5
cannot be identified using available data. The debrite in bed 5 is found
in the centre of the Agadir basin, several hundred kilometres from the
nearest plausible location for this landslide.

The event responsible for bed 5 probably caused significant ero-
sion in the lower Agadir canyon, although preceding flows could also
have contributed to this erosion. Our cores suggest that up to 4 m of
hemipelagic sediment was eroded in locations 200–300 m above the
canyon floor (Supplementary Fig. 2). Bed 5 directly overlies these
erosional surfaces, where it comprises only a few centimetres of fine
turbidite sand or mud. A spectacular field of ,10-m-deep scours
occurs at the canyon mouth7 (Supplementary Fig. 2). This scour field
was probably eroded primarily by the flow responsible for bed 5,
because this flow was the coarsest-grained and presumably the most
powerful flow in the last 200 kyr (ref. 6).

Beyond the canyon mouth there is a ,100-km-long area of open sea
floor that we term the ‘exit ramp’ (Figs 1 and 2). The flow deposited
very little sediment on the exit ramp and locally eroded up to one metre
of underlying material (Supplementary Fig. 1a). An abrupt change in
gradient from 0.05u to 0.01u separates the exit ramp from the Agadir
basin plain. This remarkably small change in gradient coincides with
the start of debrite deposition, which extends for a further ,250 km
(Fig. 2). The debrite is underlain by turbidite sand in the distal Agadir
basin, presumably because the turbidity current outran the debris flow.

The turbidity current spread more widely than the debris flow (Supple-
mentary Figs 4 and 5) and continued into the Madeira abyssal plain2–6.

Simple calculations indicate that flow was at least weakly turbulent on
the exit ramp. The debrite within bed 5 is unusually thin, suggesting that
this debris flow had particularly low yield strength. A yield strength of
approximately 1.3 Pa is estimated for motion of a ,3-m-thick debris flow
on a gradient of ,0.01u (assuming Bingham plastic rheology and a flow
density of ,1,250 kg m3)20. Debris flows with such low yield strength can
support sand21 but are predicted to become turbulent when their velocity
exceeds ,0.8 m s21 (ref. 20). This velocity is likely to be exceeded on
gradients steeper than ,0.02u, assuming a friction coefficient22 of
,0.004. Similar benthic foraminiferal assemblages in the turbidite and
the debrite also suggest that the flow was originally well-mixed, and
therefore at least weakly turbulent (Supplementary Discussion).

Two mechanisms for debris flow formation are evaluated. In the
first model, the debris flow originates by means of a complete disinteg-
ration of the original landslide, but deposited no sediment for
,200 km across the canyon mouth and exit ramp (Fig. 3c). This debris
flow could have been weakly turbulent19, but turbulence was not the
primary sediment support mechanism17,18. In the second model, debris
flow originates from a decelerating turbidity current generated by the
initial landslide (Fig. 3b). The models differ mainly in whether tur-
bulence is the primary mechanism for sediment support during flow
bypass across the lower canyon and exit ramp. We cannot determine
unequivocally which support mechanism was most important in this
part of the flow. Lack of debris-flow deposits and evidence for fast-flow
velocities (giant scours and minimal deposition, for example) indicate
that sediment was probably supported primarily by turbulence.

We propose that debris-flow deposition was probably triggered by
rapid deceleration of this initial (weakly or strongly turbulent) sediment
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Figure 1 | Location of main features in study
area offshore from northwest Africa. a, The
Agadir canyon (stippled), Agadir basin, Seine and
Madeira abyssal plains; channel network between
Agadir basin and Madeira abyssal plain (grey
shade); Canary debris flow (CDF; shaded brown);
debris avalanches (DA) from Canary Islands1–7.
The path of the flow that deposited bed 5 is shown
by arrows. Box indicates area shown in
c. Bathymetric contours spaced at 500 m
intervals. b, Change in seafloor gradient (red line)
plotted against distance along flow path.
c, Location of cores (filled circles), debris-flow
deposit (debrite), and the location of the cross-
sections shown in Fig. 2 (28–48) and in
Supplementary Figs 4 and 5 (the three bold black
lines) in Agadir basin.
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suspension (Fig. 3). Rapid flow deceleration increased the gradient
Richardson number significantly and thus reduced turbulent mixing.
Sand settled more rapidly from the flow once turbulent mixing was
suppressed23. Turbidity currents have a zone of minimum turbulence

near their velocity maximum, which could have helped to trap sedi-
ment near the bed23. A denser sediment suspension thus formed near
the sea floor, overlain by an abrupt decrease in sediment concentration,
or lutocline1,24,25. During the latter stages of this process, cohesive mud
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within the suspension developed sufficient yield strength to damp
turbulence further23. Eventually, as turbulence was fully suppressed,
yield strength replaced turbulence as the mechanism that supported
sand within the flow23. En masse settling then generated the ungraded,
structureless, mud-rich and sharp-topped debrite sand18.

This transformation was probably triggered by deceleration near
the slope break at the base of the exit ramp, because thick debrite starts
just beyond this point. Flow transformation could have initiated on
the exit ramp (as recorded by thin granule layers with mud matrix in
cores 52 and 48; Fig. 3), or across a wider expanse of the Agadir basin.
Seafloor erosion in the lower canyon probably increased sediment
concentration, and ’primed’ this particular flow to transform. This
would explain why other large-volume flow deposits6 do not contain
debrites near the same slope break (Supplementary Fig. 1).

The origin of sandy debris flows is important not just for under-
standing how sediment is delivered to the deep ocean by huge flows,
but also has potential implications for hydrocarbon exploration. This
is because some of the world’s largest oil and gas reserves26–28 occur
within ancient rock sequences that contain similar debrites, depos-
ited during the same event as surrounding turbidites17. Mud-rich
debrite sandstone is a barrier to subsurface flow of oil and gas within
more permeable turbidite sandstone. It is necessary to predict the
extent and shape of these debrite sandstones to recover hydrocarbon
reserves efficiently. Our work shows that extensive debrites can form
down flow from abrupt slope breaks and areas of significant seafloor
erosion. The ’linked’ debrite forms the centre of the deposit and is
encased within turbidite sandstone and mudstone.

We also demonstrate that voluminous submarine flows can leave
behind remarkably little sediment on low slopes (0.2 to 0.05u in our
case). This result also has important implications for assessment of sub-
marine geohazards. Exploration for oil and gas now commonly targets
‘deep-water’ oceanic settings on the continental slope26–28. Large-volume
density flows are potentially catastrophic for seafloor installations
involved in oil and gas recovery26,27, whose value may be several hundred
million dollars28. These installations are typically sited on slopes .0.05u.
Cores collected next to the installations for geotechnical purposes are
often used for subsequent geohazard analysis. Our work suggests that
such cores could contain a subtle record of very large volume flows. The
clearest record of these flows is found by coring low-gradient basin
plains, downslope from installations. The frequency of large-scale flows
and their parent landslides could be greatly underestimated if cores from
only higher-gradient settings next to installations are used.

METHODS SUMMARY
Individual flow deposits were correlated between cores using sand-fraction com-

position, the ratio of coccolith species within mud, magnetic susceptibility,

colour, thickness, and relative position of layers within the core3,6 (for example,

Supplementary Fig. 1). Ratios of coccolith nannofossil species within hemipela-

gic mud were used to date the flows2–6, together with an oxygen isotope stra-

tigraphy. We analyse the deposit of a particular flow (bed 5) that occurred

,60 kyr ago6. Coccolith and benthic foraminifera mixtures are documented

within bed 5. Coccolith nannofossils record the relative age of sediment incor-

porated into the flow2,4–6. Older coccoliths originate from more deeply buried
sediment layers. Benthic foraminiferal microfossil assemblages record the water

depth from which these sand-sized particles originated29,30.
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