Volcanic Symphony in the Lab

Luigi Burlini1 and Giulio Di Toro2

Like philharmonic orchestras that perform symphonies with different musical instruments, active volcanoes produce a mix of seismic signals (earthquakes) that vary in their periodicity. Because each type of signal is associated to different physical processes, seismic monitoring can be a powerful tool for eruption forecasting, especially when combined with geochemical data (such as composition of escaping gases) and ground-deformation monitoring (1). The key issue is how to associate volcanic processes—which include fracture and dike propagation, magma feeding, and degassing—with each type of earthquake (2, 3). One approach is to recreate volcanic conditions with small laboratory samples, and then extrapolate the experimental signals (sonic to ultrasonic waves) to the scale of volcanic features. On page 249 of this issue, Benson et al. (4) measured acoustic emissions (AEs) in a basalt sample from Mount Etna during loading and fracturing, and then on a rapid decompression of fluid. The AE signals recorded during the pore fluid decompression are similar to those detected during low-frequency earthquakes associated with volcanoes, which suggests that some natural quakes also originate from the rapid release of pressure in fluids (melts, gas, and supercritical fluids) flowing in fractures.

The seismic signals from volcanoes include high-frequency waves similar to those detected during tectonic earthquakes as well as low-frequency or long-period earthquakes and very-long-period earthquakes; tremors (continuous low-frequency ground vibration) and hybrid events that can mix these signals are also observed (2). Several theories have been proposed that connect volcanic with different seismic signals (3), but lab experiments potentially can allow observation of each physical mechanism separately—just as a clarinet passage is easier to recognize in a symphony performance if you have first heard the clarinet playing alone. Benson et al., using the tools typical of passive seismology (which looks at seismic signals and includes three-dimensional earthquake location, waveform analysis, and computation of focal mechanisms), interpreted volcanic seismicity on the basis of experiments that reproduce variation of the physical conditions (such as pressure drop in a conduit) occurring in volcanic environments.

In rock deformation experiments, AEs are elastic waves produced by local strain events such as microfracturing, interaction of fluids with the crack walls, etc. (5, 6), although only rarely are emissions transmitted at audible frequencies (20 to 20,000 Hz). Following the pioneering work of Obert and DuVall (7), who used geophones to measure these signals, the use of arrays of piezoelectric transducers has enabled researchers to pinpoint the source of the AE and follow the evolution of sample damage (6, 8, 9).

To what extent can we link these lab studies and data from volcanoes? Experimental and natural waveforms can be similar in shape but can differ by orders of magnitude in frequency and amplitude (see the figure). Earthquakes are detected by seismometers and accelerometers that record ground motion and acceleration, whereas AEs are detected by

References and Notes
16. In 15 arbitrarily chosen Rubiaceae, Colwell et al.’s elevation ranges are underestimated by an average of 800 m compared to Costa Rican collections (www.gbf.org).

4Institute of Geology, ETH Zürich, CH-8092 Zürich, Switzerland.
5Dipartimento di Geoscienze, Università di Padova, 35137 Padova, Italy. E-mail: luigi.burlini@erdw.eth.ch; giulio.ditoro@unipd.it
piezoelectric transducers, which record stress variation (and therefore deformation of the transducer and its acceleration). There are several reasons for believing that the lab studies are good models for earthquakes:

1) The ratio between the energy content of the AEs and their occurrence follows the Gutenberg-Richter earthquake statistic law (6, 10), which states that the cumulative number of events is inversely proportional to their energy.

2) There are strong similarities between the small quakes that follow a main earthquake (the so-called aftershock sequence) and the AE activity that follows sample fracturing (6).

3) AEs range from 10^5 to 10^7 Hz, whereas seismic waves have frequencies around 1 Hz. This difference can be related to the length of the fractures generated (at most 1 cm in the lab versus kilometers in the field). Benson et al. confirmed that the length of the microfractures observed after the experiments scaled with the dominant frequency of the AEs (11), similar to what is predicted for natural earthquakes (12).

4) The fluid viscosity of the fluid producing a tremorlike signal can be scaled from laboratory to nature, as Benson et al. have documented.

5) The spectrograms of natural and laboratory seismicity, once allowance is made for the different frequencies, are similar. We infer that the evolution of the seismic signal with time is similar, which suggests that the underlying physical process is the same.

This final point is well illustrated in Benson et al.; the introduction of waveform analysis of the AEs allowed the synthesis of spectrograms that describe the frequency and amplitude content of each AE (11) that are remarkably similar to those of natural seismic waves (see the figure).

Experimentally reproducing sections of the volcanic symphony in the laboratory has several advantages but some limitations. Application of pressures and temperatures typical of volcanic areas at depths of 5 km (about 130 MPa and 300° to 600°C) requires small sample size (centimeter scale), and the AEs have small amplitudes because they originate from micrometer-scale displacements. Because the seismic signal decays rapidly with distance, the piezoelectric transducers must be placed as close as possible to the sample. Unfortunately, the transducer performance drops above 250°C, so working at higher temperatures requires that ceramic buffer rods are placed between the sample and the transducers to keep the latter cool.

Because Benson et al. were mainly looking at the effects of fluid–conduit wall interactions, they could work at room temperature and place the transducers directly on the specimen. Their experimental configuration reproduces schematically a volcanic conduit, and their array of piezoelectric transducers simulates a volcanic seismic network. The waveforms Benson et al. recorded (often referred as microseismicity) were in fact similar to earthquakes registered during natural volcanic activity, despite working at room temperature. The microstructural analysis of the specimens after the experiments allowed them to identify a damage zone where the microseismicity was localized. From the geometry of the newly created fractures within the damage zone, they built a model explaining the nature of the microseismicity. Just as the turbulence of the air at the tip of a clarinet emits the typical sound, the tortuosity of the damage zone produces the turbulence of the fluid flow during the decompression. The fluids in volcanoes can be magma, supercritical fluids, and gases, but Benson et al. successfully simulated a volcano using only water.

Scale-invariant numerical modeling could be used to extrapolate these results to the dimensions of volcanoes and make the comparison more robust. This understanding should allow for better predictions of the intensity and timing of volcanic eruptions, so that early warning and alert can save lives.

References